Universal sheet resistance and revised phase diagram of the cuprate high-temperature superconductors.
نویسندگان
چکیده
Upon introducing charge carriers into the copper-oxygen sheets of the enigmatic lamellar cuprates, the ground state evolves from an insulator to a superconductor and eventually to a seemingly conventional metal (a Fermi liquid). Much has remained elusive about the nature of this evolution and about the peculiar metallic state at intermediate hole-carrier concentrations (p). The planar resistivity of this unconventional metal exhibits a linear temperature dependence (ρ ∝ T) that is disrupted upon cooling toward the superconducting state by the opening of a partial gap (the pseudogap) on the Fermi surface. Here, we first demonstrate for the quintessential compound HgBa2CuO4+δ a dramatic switch from linear to purely quadratic (Fermi liquid-like, ρ ∝ T(2)) resistive behavior in the pseudogap regime. Despite the considerable variation in crystal structures and disorder among different compounds, our result together with prior work gives insight into the p-T phase diagram and reveals the fundamental resistance per copper-oxygen sheet in both linear (ρ = A1T) and quadratic (ρ = A2T(2)) regimes, with A1 ∝ A2 ∝ 1/p. Theoretical models can now be benchmarked against this remarkably simple universal behavior. Deviations from this underlying behavior can be expected to lead to new insight into the nonuniversal features exhibited by certain compounds.
منابع مشابه
The Electronic Nature of High Temperature Cuprate Superconductors
We review the field of high temperature cuprate superconductors, with an emphasis on the nature of their electronic properties. After a general overview of experiment and theory, we concentrate on recent results obtained by angle resolved photoemission, inelastic neutron scattering, and optical conductivity, along with various proposed explanations for these results. We conclude by reviewing ef...
متن کاملPerspective on the phase diagram of cuprate high-temperature superconductors
Universal scaling laws can guide the understanding of new phenomena, and for cuprate high-temperature superconductivity the influential Uemura relation showed, early on, that the maximum critical temperature of superconductivity correlates with the density of the superfluid measured at low temperatures. Here we show that the charge content of the bonding orbitals of copper and oxygen in the ubi...
متن کاملFunctional renormalization group study of superconductivity in the two-dimensional Hubbard model
The cuprate high-temperature superconductors attracted a lot of research interest since their discovery more than a quarter of a century ago. The reason is not only the high critical temperature for superconductivity, but also the competition of instabilities and the intriguingly rich phase diagrams. The latter include antiferromagnetic or d-wave superconducting phases and more exotic behavior ...
متن کاملd-wave pairing symmetry in cuprate superconductors
Phase-sensitive tests of pairing symmetry have provided strong evidence for predominantly d-wave pairing symmetry in both the holeand electron-doped high-Tc cuprate superconductors. Temperature dependent measurements in YBa2Cu3O7−δ (YBCO) indicate that the d-wave pairing dominates, with little if any imaginary component, at all temperatures from 0.5K through Tc. In this article we review some o...
متن کاملQuantum phase transitions of antiferromagnets and the cuprate superconductors
I begin with a proposed global phase diagram of the cuprate superconductors as a function of carrier concentration, magnetic field, and temperature, and highlight its connection to numerous recent experiments. The phase diagram is then used as a point of departure for a pedagogical review of various quantum phases and phase transitions of insulators, superconductors, and metals. The bond operat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 110 30 شماره
صفحات -
تاریخ انتشار 2013